

## DUAL-ANALOGUE SIGNAL SWITCH

## DAS-SWITCH



switching between 2 independent Input signals but also scaling the signals to the same output range thus a single ECU calibration can be used regardless of the sensor selection.

An example application can be a dual-track Pedal position switching for Fly-by-wire Throttle where a “Hand-Throttle” is required for Engine fire-ups but second Pedal position sensor not supported by the ECU. The firmware is equipped with Autocalibration feature which can learn and set the scaling coefficients for each Input sensor and allow for seamless switching between the “pedal” and “hand” throttle. Another application can be for Backup Sensor strategies where under a faulty condition backup sensor needs to be selected to the same ECU input.

Monitoring and Communication of the DAS-SWITCH with the Vehicle Electronics is handled by a low-power microcontroller and can be customized to customer requirements. See the specifications below for default options.

### Description

#### Electrical

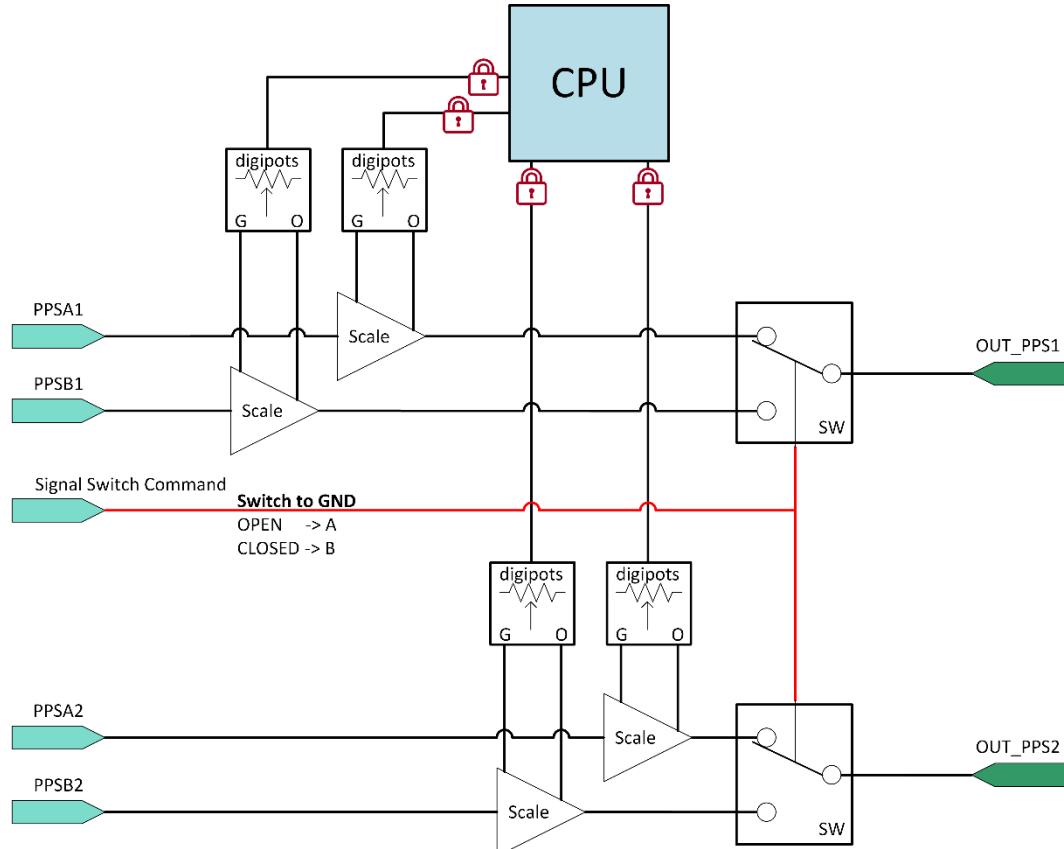
|                            |                                |
|----------------------------|--------------------------------|
| Operating Voltage Range    | +8 – 18V                       |
| Current consumption        | ~100mA                         |
| +5V PSU number of channels | x1                             |
| +5V PSU maximum current    | 100mA @5V (<0.1V voltage drop) |

#### Input (sensor)

|                          |              |
|--------------------------|--------------|
| Sensor type              | Analogue     |
| Number of Input channels | x4 (x2 dual) |
| Sensor Voltage Range     | 0 – 5V       |

#### Switch Input

|                                |               |
|--------------------------------|---------------|
| Switch polarity <sup>(1)</sup> | Switch to GND |
| Internal pull-up               | 3kOhm to 5V   |

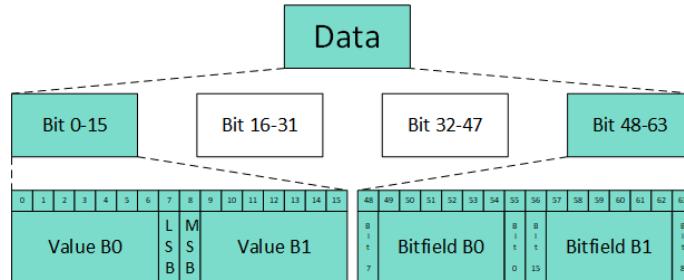

#### Output

|                               |              |
|-------------------------------|--------------|
| Sensor Type                   | Analogue     |
| Number of Output channels     | x2 (x1 dual) |
| Analogue Output Voltage Range | 0 – 5V       |

|                       |                        |
|-----------------------|------------------------|
| Analogue reference    | ECU ground             |
| <b>Scaling</b>        |                        |
| Resolution (digipot)  | 12bit (1024)           |
| Gain range            | 0.4x – 2.4x            |
| Offset range          | -5 – +5V               |
| <b>Communication</b>  |                        |
| CAN                   | CAN 2.0B               |
| Baud rate             | <b>1M</b> , 500k, 250k |
| Termination           | Available on request   |
| Base arbitration IDs  | See CAN Communication  |
| <b>Mechanical</b>     |                        |
| Operating Temperature | 0° - 70°C              |
| Maximum Dimensions    | 73 x 62 x 27 mm        |
| Case material         | Aluminium alloy        |
| Weight                | ~105 g                 |
| <b>Environmental</b>  |                        |
| IP rating             | IP65                   |
| <b>Connection</b>     |                        |
| Connector             | <b>AS010-35PN</b>      |
| Mating Connector      | <b>AS610-35SN</b>      |

(1) Other options available upon request

## Analogue Diagram




## Scale Formula

$$V_{out} = Gain \times V_{in} + Offset$$

## CAN Communication

All CAN Identifiers and parameters can be changed to customer requirements. The CAN description below is defined using a bit index from start of the data field in the message. All “multi-byte” channels are in **LITTLE-ENDIAN (Intel)** format (first byte first).



Receive

| Packet       | DAS_SWRx_Cal |          |             |                    |
|--------------|--------------|----------|-------------|--------------------|
| ID           | 0x40         |          |             |                    |
| Direction    | DAS Rx       |          |             |                    |
| Rate         | On Demand    |          |             |                    |
| Bits         | Name         | Gain     | Offset      | Notes              |
| <b>0-15</b>  | CAL_trigger  |          |             |                    |
|              |              | Bit 0-3  | -           |                    |
|              |              | Bit 4-7  | CAL_trigger | (code <b>0xA</b> ) |
|              |              | Bit 8-15 | -           |                    |
| <b>16-31</b> | -            |          |             |                    |
| <b>32-47</b> | -            |          |             |                    |
| <b>48-63</b> | -            |          |             |                    |

Transmit

| Packet       | DAS_SWTx1_Status    |       |        |          |
|--------------|---------------------|-------|--------|----------|
| ID           | 0x41                |       |        |          |
| Direction    | DAS Tx              |       |        |          |
| Rate         | 10Hz                |       |        |          |
| Bits         | Name                | Gain  | Offset | Notes    |
| <b>0-15</b>  | V_PPS1_out          | 0.005 | 0      | [V]      |
| <b>16-31</b> | V_PPS1_out          | 0.005 | 0      | [V]      |
| <b>32-39</b> | CAL_calibrationCode |       |        | Enum     |
| <b>40-47</b> | DAS_Faults          |       |        | Bitfield |
| <b>48-55</b> | DAS_CommandSignal   |       |        | Enum     |
| <b>56-63</b> | -                   |       |        |          |

| Packet       | DAS_SWTx2_Voltages |       |        |       |
|--------------|--------------------|-------|--------|-------|
| ID           | 0x42               |       |        |       |
| Direction    | DAS Tx             |       |        |       |
| Rate         | 10Hz               |       |        |       |
| Bits         | Name               | Gain  | Offset | Notes |
| <b>0-15</b>  | V_PPSA1            | 0.005 | 0      | [V]   |
| <b>16-31</b> | V_PPSA2            | 0.005 | 0      | [V]   |
| <b>32-47</b> | V_PPSB1            | 0.005 | 0      | [V]   |
| <b>48-63</b> | V_PPSB2            | 0.005 | 0      | [V]   |

| Packet           | DAS_SWTx3_Scales |      |        |       |
|------------------|------------------|------|--------|-------|
| <b>ID</b>        | 0x43             |      |        |       |
| <b>Direction</b> | DAS Tx           |      |        |       |
| <b>Rate</b>      | 10Hz             |      |        |       |
| Bits             | Name             | Gain | Offset | Notes |
| <b>0-7</b>       | CAL_gainPPSA1    | 0.01 | 0      | [-]   |
| <b>8-15</b>      | CAL_offsetPPSA1  | 0.04 | -5.1   | [V]   |
| <b>16-23</b>     | CAL_gainPPSA2    | 0.01 | 0      | [-]   |
| <b>24-31</b>     | CAL_offsetPPSA2  | 0.04 | -5.1   | [V]   |
| <b>32-39</b>     | CAL_gainPPSB1    | 0.01 | 0      | [-]   |
| <b>40-47</b>     | CAL_offsetPPSB1  | 0.04 | -5.1   | [V]   |
| <b>48-55</b>     | CAL_gainPPSB2    | 0.01 | 0      | [-]   |
| <b>56-63</b>     | CAL_offsetPPSB2  | 0.04 | -5.1   | [V]   |

| Packet           | DAS_SWTx3_System   |         |               |       |
|------------------|--------------------|---------|---------------|-------|
| <b>ID</b>        | 0x44               |         |               |       |
| <b>Direction</b> | DAS Tx             |         |               |       |
| <b>Rate</b>      | 1Hz                |         |               |       |
| Bits             | Name               | Gain    | Offset        | Notes |
| <b>0-7</b>       | V_DAS_SensorSupply | 0.025   | 0             | [V]   |
| <b>8-15</b>      | I_DAS_SensorSupply | 1       | 0             | [mA]  |
| <b>16-23</b>     | DAS_CPUtemp        | 1       | 0             | [°C]  |
| <b>24-31</b>     | DAS_SWversion      | Bit 0-3 | Major SW ver. |       |
|                  |                    | Bit 4-7 | Minor SW ver. |       |
| <b>32-39</b>     | DAS_SerialNumber   | 1       | 0             | [-]   |
| <b>40-48</b>     | -                  |         |               |       |
| <b>48-63</b>     | -                  |         |               |       |

## CAL\_calibrationCode

| Code (hex) | Description     |
|------------|-----------------|
| 0x0        | CODE_AWAITING   |
| 0x1        | CODE_START      |
| 0x2        | CODE_PUMP_PPSA  |
| 0x3        | CODE_STORE_PPSA |
| 0x4        | CODE_PUMP_PPSB  |
| 0x5        | CODE_STORE_PPSB |
| 0x6        | CODE_SUCCESS    |
| 0x7        | CODE_FAIL       |

## DAS\_Faults

| Bit | Description      |
|-----|------------------|
| 0   | ERR_MemoryAll    |
| 1   | ERR_MemoryGain   |
| 2   | ERR_MemoryOffset |
| 3   | ERR_CurveDir     |
| 4   | ERR_PSUamps      |
| 5   | ERR_PSUVolts     |

## DAS\_commandSignal

| Code (hex) | Description   |
|------------|---------------|
| 0x0        | PPSB_selected |
| 0x1        | PPSA_selected |

## Coefficient Autocalibration

For correct functionality is necessary to perform this Autocalibration procedure. It is designed to find and set Analogue circuit coefficients for the Output Voltage to be within the desired ranges for the given Inputs. See Analogue schematics for more details.

After successful Autocalibration the settings are stored inside the NV (non-volatile) memory of the Analogue circuit itself thus the settings are remembered over powercycle.

Perform this Autocalibration when Input sensors ranges change or when necessary.

### Trigger

- Trigger over CAN
- Packet: DAS\_SWRx\_Cal (0x40)
- Channel: CAL\_trigger (4bits)
- Content:

Autocalibration is triggered on rising edge from **0** to **0xA** (10 dec)

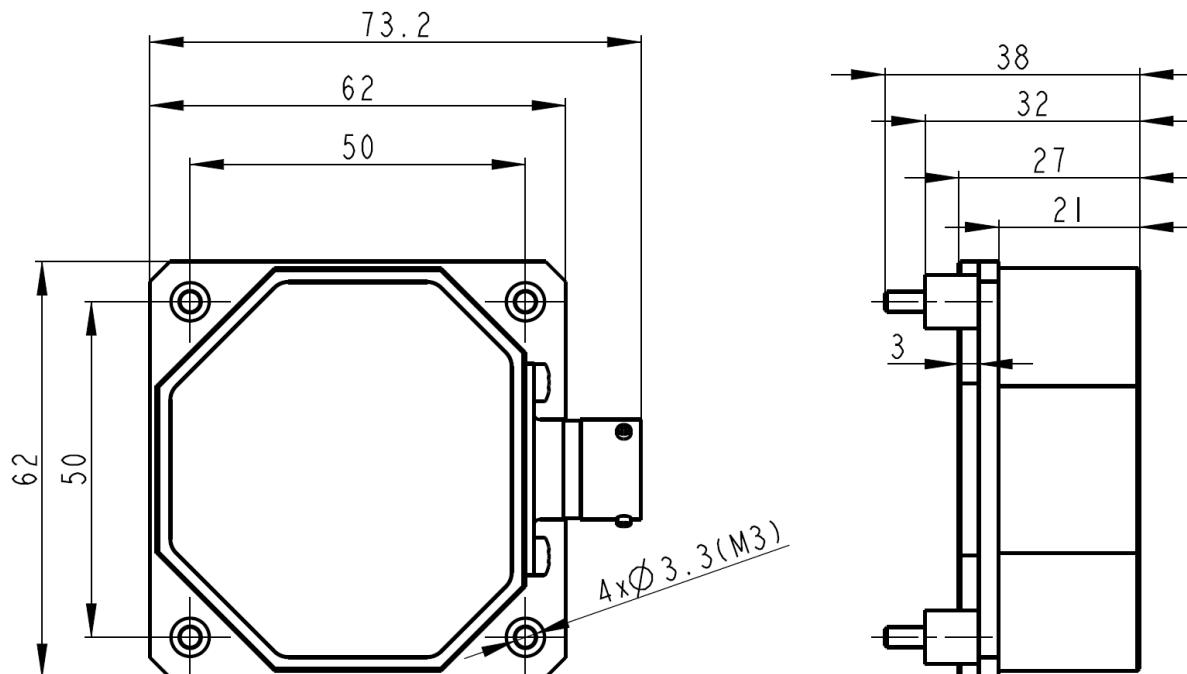
### Procedure

**CODE\_AWAITING** after power up the unit.

1. **CAL\_trigger** signal sent
2. **CODE\_START**
  - The system is getting ready for PPSA sensor calibration
  - Keep the PPSA Sensor in closed position during this phase
  - After 5seconds it goes to next state
3. **CODE\_PUMP\_PPSA**
  - Pump PPSA Sensor for the system to learn the limits (min & max)
  - After 10seconds it goes to the next step
4. **CODE\_STORE\_PPSA**
  - The system is getting ready for PPSB sensor calibration
  - Keep the PPSB Sensor in closed position during this phase
  - After 5seconds it goes to next state
5. **CODE\_PUMP\_PPSB**
  - Pump PPSB Sensor for the system to learn the limits (min & max)
  - After 10seconds it goes to the next step
6. **CODE\_STORE\_PPSB**
  - The system calculates and sets the Analogue circuit coefficients
  - After it is finished it goes to the next step
7. **CODE\_SUCCESS** or **CODE\_FAIL**
  - The result of the Autocalibration process
  - CODE\_FAIL reason in DAS\_Faults bitfield

### Curve direction

Only the following combination of Input sensor curve directions are allowed for Autocalibration:


|   |    |   |          |    |    |          |          |
|---|----|---|----------|----|----|----------|----------|
| A | // | X | \\<br>\\ | // | X  | \\<br>\\ | X        |
| B | // | X | \\<br>\\ | X  | // | X        | \\<br>\\ |
|   | ✓  | ✓ | ✓        | ✗  | ✗  | ✗        | ✗        |

## Pinout

| Connection       |                        |
|------------------|------------------------|
| Connector        | AS010-35P <sup>N</sup> |
| Mating Connector | AS610-35S <sup>N</sup> |

| Pin | Function              |
|-----|-----------------------|
| 1   | BATT +                |
| 2   | BATT GND              |
| 3   | CAN Hi                |
| 4   | CAN Lo                |
| 5   | +5V PSU               |
| 6   | Sensor GND            |
| 7   | PPSA1                 |
| 8   | PPSA1                 |
| 9   | PPSB1                 |
| 10  | PPSB2                 |
| 11  | Signal Switch Command |
| 12  | OUT_PPS1              |
| 13  | OUT_PPS2              |

## Drawing

